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The influence of the compressibility of a viscous gas flowing around a cylinder with a circular cell on the
mechanism of decreasing the drag of the cylinder by suction of air through the withdrawing slot channel in
the cell was estimated based on the solution of the stationary Reynolds equations closed using the model of
shear-stress transfer, the continuity equations, the energy equation, and the equation of state.

Introduction. In the last decade, considerable attention has been given by researchers of different countries
to the study of the possibility to control a flow around bodies with the use of vortex cells built into their surface
and a distributed or concentrated blow or suction as well as by rotation of the bodies within the limits of the cells
(see, e.g., [1, 2]). One simple test problem on the study of the mechanism of decreasing the drag of bodies by in-
tensification of the flow circulating in the vortex cells built into them is the problem on the laminar and turbulent
flows of an incompressible fluid around a cylinder containing a circular cavity with a central body enclosed in it
[3–8]. This problem was solved on the assumption that a symmetric flow around a cylinder is provided by a sepa-
rating plate positioned in the near wake. The progress in investigating this flow was achieved mainly due to the de-
velopment of computational multiblock technologies for solving the Navier–Stokes and Reynolds equations [1, 9] as
well as the improvement of models of turbulence, in particular the appearance of Menter’s model of shear-stress
transfer [10–13]. Of the results obtained, worthy of mention is first of all the effect of "explosion turbulence" aris-
ing at critical rates of rotation or suction in vortex cells due to the jump-like increase in the velocity of the reverse
flow to a value comparable to the velocity of the incident flow. In this case, all the integral characteristics experi-
ence a discontinuity and the drag decreases due to the expenditure of energy by 36% when the central body is ro-
tated and by 53% when air is sucked from its surface. A rounding of the trailing edge of a vortex cell allows one
to additionally decrease the drag of a cylinder by 10%.

The object of the present investigation is two peculiarities of the problem being considered. As already men-
tioned, a substantial decrease in the drag of a cylinder leads to a marked increase in the intensity of the flow circu-
lating in a cell built into its surface, which allows the conclusion that the compressibility of the medium significantly
influences the flow around the cylinder even at moderate Mach numbers. The second peculiarity of this problem is
that in it a suction in a vortex cell is considered. As was shown in [9] in the process of calculating the flow around
the thick airfoil section of an E′KIP space craft, the concentrated slot suction from the edges of the cells and the dis-
tributed suction from the central bodies are equivalent, i.e., the aerodynamic characteristics of the airfoils having equal
flow coefficients are similar independently of the methods of intensification of the flow in their vortex cells. However,
the slot suction was realized not entirely correctly because its rate, which was fairly high, was assumed to be constant
across the width of the slot in a cell. It is evident that the uniformity of an airfoil is a strong assumption that should
be obviated. Therefore, we formulated the problem being considered with the use of a withdrawing channel at the out-
put of which the velocity profile of the sucked-air flow is uniform.

Formulation of the Problem. The interaction of a steady flow of a compressible viscous gas with a trans-
verse cylinder in the absence and in the presence of a circular vortex cell on its surface is calculated on the assump-
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tion that the gas flow is symmetric and its adiabatic coefficient is equal to 1.4 (air). A stationary plane motion of the
medium in the upper semiplane of the cylindrical computational region with a symmetry plane is considered. The cen-
ter of the cylinder is coincident with the origin of the Cartesian coordinate system x, y. The outer boundary of the
computational region is at a large distance (35 cylinder diameters) from the center of the cylinder. The parameters of
the flow at the input boundary are fixed. The density and velocity of the flow and the diameter of the cylinder are
taken as the dimensionless scales. The soft boundary conditions (the conditions of continuation of solution) are set at
the output boundary and the symmetry conditions are set in the symmetry plane. The parameters of turbulence at the
input to the computational region are selected in the same manner as in the case of solution of the problem on a flow
of an incompressible viscous fluid [1, 9]: it is assumed that the degree of turbulence of the external flow is at a level
characteristic of a wind tunnel (Tu = 1.5%) and the scale of turbulence is equal to the diameter of the cylinder. The
adhesion condition is set at the walls. The Reynolds number Re∞ is taken to be equal to 1.5⋅104, which corresponds
to the experimental value of Re determined in the experiments carried out in a wind tunnel by Roshko [14]. The
Mach number M∞ is varied from 0 to 0.4.

The vortex cell built into the surface of the cylinder being considered represents a circular cavity of radius 0.08
(Fig. 1a). This cavity is positioned such that the separation point travels from the windward of the circular cylinder to
its lee side; the position of the cavity is selected based on the experience in solving analogous problems [3–8]. The
coordinates of the center of the cell are x = 0.0772, y = 0.4339. The radius of rounding of the cavity edges is taken to
be equal to 1.012⋅10−3, i.e., it is assumed that these edges are sharp. A withdrawing slot channel of width 0.02 and length
0.08 is positioned along the normal to the surface of the cell at an angle of 145o to the outer normal to the cylinder,
passing through the center of the cell. It is assumed that the volumetric rate of flow through the channel is equal to
0.015.

Computational Grids. Structured multiblock grids are introduced for calculating the air flow in a multiply
connected, many-scaled zone positioned near the cylinder with a cell (Fig. 1a). The multistage grids denoted by A and
B are used for correct definition of the near-wall boundary layer and the separation region in the wake downstream of
the cylinder. The grid A consists of two stages representing concentric grid layers, in which nodes are identically dis-
tributed along the radius. In the layer of thickness 7, positioned near the cylinder, a fairly coarse grid, containing 220
cells, is constructed for representation of the large-scale vortex zone. In the far layer (60 cells) of length of up to 35
cylinder diameters, the grid pitch in the radial direction increases monotonically. The stage of cells B of small thick-
ness 0.07, adjacent to the surface of the cylinder, is used for definition of the developing boundary layer. In it, 40
cells are arranged in the radial direction and the near-wall pitch is equal to 10−4. The cells in this grid are distributed
nonuniformly over the circumference of the cylinder with a bunching of nodes to the back critical point, and the grid

Fig. 1. Multiblock computational grids (A–G) near the vortex cell with a with-
drawing channel on the surface of a cylinder (a) and dependences of the total
drag (curves 1, 2), drag (3), and the additional drag caused by the expenditure
of energy (4), the drag of the cylinder in the absence (1) and in the presence
(2–4) of a vortex cell, and the mass-flow coefficient in the withdrawing chan-
nel (5) on the Mach number (b).
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pitch is equal to 2⋅10−3. At the front critical point, the grid pitch is assumed to be equal to 10−2. The total number of
cells positioned along the circumference of the cylinder is equal to 320 without of a vortex cell and 290 for the cyl-
inder with a vortex cell.

The concentric grid C (with a hole of diameter 0.0096 at the center) defines the distribution of computational
cells in the circular cavity. In this grid, as in the above-described grids, nodes are arranged in the radial direction with
a bunching to the edges of the cavity. The near-wall pitch is equal to 10−4. Along the radius, 40 cells are positioned.
In the circumferential direction, nodes are arranged very nonuniformly. The grid is bunched predominantly in the
neighborhood of the sharp edges and in the region of the slot hole. In the region of the "cavity window," 40 cells are
positioned, and 80 cells are arranged along the contour of the cavity.

The central zone of the cavity, coincident with the hole of the concentric grid C, is covered by a square, rec-
tangular grid ("patch") of size 0.05 × 0.05, containing 16 × 16 cells distributed uniformly. This grid is introduced for
prevention of the near-axis troubles characteristic of the calculations carried out with the use of cylindrical grids [1].

The origin of the withdrawing slot channel is covered by a rectangular grid G with cells (15) distributed uni-
formly across the channel and nonuniformly along it; in this case, the grid pitch increases from 10−4 to 5⋅10−4 with
increase in the distance from the hole.

To increase the accuracy of definition of the vortex flow in the neighborhood of the cavity window, we in-
troduced a curvilinear three-section grid D containing 90 × 30 cells, adjacent to the window. The left and right frag-
ments of this grid represent cylindrical grids joined to the surface of the cylinder, and its central part positioned
immediately above the window of the cavity represents a Scalence grid with a lower and upper rectilinear generating
lines. The thickness of the grid layer is 0.035.

Note that it is necessary to correctly define the features of the flow in the neighborhood of the rounded sharp
edges, where the special fine grids E and F of size 38 × 15 cells are arranged.

Features of the Computational Algorithm. The derivation of multiblock computational technologies realized
in the VP2 ⁄ 3 package used for solving problems on separation incompressible-fluid flows around bodies with vortex
cells was described in detail in [1]. The approach to the solution of the Reynolds equations is based on the known
method of splitting by physical processes within the framework of the SIMPLEC procedure of pressure correction [15].
The equation for the pressure correction is written instead of the continuity equation, which is entirely warranted for
incompressible-fluid flows. However, this method of solving the problem being considered is not unique. For example,
the method of artificial compressibility [15] is sometimes used for this purpose; it allows one to construct a marching
algorithm for solving the system of equations for an unknown vector (velocity components, pressure). This method
correlates well with the methods of solving the equations for a compressible viscous gas that differ substantially from
the methods of pressure correction and have a limited application at low Mach numbers.

The derivation of the generalized procedure of pressure correction, which would be equally applied to incom-
pressible-fluid and compressible-gas flows, was a pressing problem in the 1980s. This problem was solved in a num-
ber of works (see, e.g., [16, 17]). A separate problem is the calculation of flows with compression shocks that can be
fairly strong at Mach numbers larger than unity.

The generalized algorithms for pressure correction, developed earlier [15–17], were realized principally with
the use of multiblock grids with no account for the modern semiempirical models of turbulence. The problem on con-
struction of the generalized multiblock algorithm for pressure correction was solved to advantage in the process of cal-
culating airfoils with holes [18]. The starting works are monographs [1, 9] and articles by Menter with co-authors and
Hellsten [10–13, 19], devoted to the methodical aspects on simulation of turbulence, in particular to the model of
shear-stress transfer used in the present investigation. An important feature of the algorithm developed for calculating
compressible turbulent flows, including flows with compression shocks, is its applicability to simulation of incompress-
ible flows. The methodical calculations of nonviscous flows with compression shocks (see, e.g., [18]) have shown that,
from the standpoint of computational-process stability, it is appropriate to approximate the convective members of the
Reynolds equations by the Leonard scheme and the convective members of the other equations by the Van-Lir scheme.

Analysis of Calculation Data. Some of the results obtained are presented in Figs. 1–5 and in Tables 1–3.
As follows from Fig. 1b, the drag of a circular cylinder increases monotonically with increase in the Mach

number of the incident flow in the same way as the drag of a cylinder with a bulging coaxial disk increases in the
case of an axisymmetric flow around it [20]. As is seen from Table 1, Cxc increases due to the increase in the pres-
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sure drag Cxp, while the friction drag Cxf remains constant. It is interesting to note that the results of calculations of
Cxp at M∞ = 0, i.e., for an incompressible fluid, are in good agreement with the analogous results of the calculations
carried out earlier [1, 21] and the corresponding experimental data [14].

The arrangement of a circular cavity with a withdrawing channel on the surface of the cylinder being consid-
ered and organization of a suction with a constant volumetric rate of flow (Fig. 1a) makes it possible to decrease the
calculated drag of the cylinder by almost two times (curve 3 in Fig. 1b). When the Mach number increases, Cx
changes in the same manner as the drag of the circular cylinder with no a vortex cell, i.e., it increases monotonically
with increase in the pressure drag Cxp (Table 1). In this case, the friction drag of the cylinder with a cavity remains
unchanged and lower by approximately 20% than the friction drag of the usual cylinder.

The additional drag Cxadd (curve 4) caused by the expenditure of energy for the suction, determined by the
method proposed in [1], decreases monotonically with increase in the Mach number M∞ predominantly due to the de-
crease in the coefficient of mass flow through the withdrawing channel cq (curve 5). As a result, the total drag of the
cylinder with a vortex cell Cxc.v somewhat decreases at M∞ changing within the range 0–0.4 being considered (curve
2). Hence, the ratio Cxc

 ⁄ Cxc.v (see Table 2) increases monotonically with increase in the Mach number and reaches a
maximum at M∞ = 0.3.

The distributions of the longitudinal velocity u(x) and the density ρ(x) in the symmetry plane in the wake
downstream of the cylinder in the absence and in the presence of a vortex cell on its surface are very different in the
case where M∞ increases (Fig. 2). In the range of change in M∞ from 0 to 0.3, the profiles of u(x) are practically
identical (Fig. 2a), while ρ(x) depends substantially on M∞. As is seen from Fig. 2b, the largest rarefaction is attained
in the circulation flow in the near wake downstream of the cylinder, and the level of this rarefaction is markedly
larger for the circular cylinder than for the cylinder with a vortex cell.

TABLE 1. Influence of the Compressibility on the Integral Characteristics of the Circular Cylinder in the Absence and in the
Presence of a Vortex Cell

Mach number
Cylinder Cylinder with a vortex cell

Cxp Cxf Cxp Cxf

0 [14] 0.72 — — —

0 [21] 0.732 0.011 — —

0 [1] 0.729 0.019 — —

0 0.734 0.017 0.202 0.014

0.01 0.731 0.017 0.200 0.014

0.15 0.739 0.017 0.193 0.014

0.3 0.767 0.017 0.184 0.011

0.4 0.789 0.017 0.217 0.011

TABLE 2. Influence of the Mach Number on the Decrease in the Relative Drag of the Cylinder with a Vortex Cell

Mach number 0 0.01 0.15 0.3 0.4

Cxc
 ⁄ Cxc.v 1.94 1.94 2.02 2.22 2.21

TABLE 3. Influence of the Compressibility on the Extremum, Local Characteristics of the Flow around the Cylinder in the
Absence and in the Presence of a Vortex Cell

Mach number
Cylinder Cylinder with a vortex cell

um ρm km µt,m um ρm km µt,m

0 –0.244 1 0.0913 0.0276 –0.199 1 0.1098 0.00873

0.01 –0.236 1 0.0889 0.0272 –0.199 1 0.1082 0.00911

0.15 –0.238 0.985 0.0897 0.0270 –0.192 0.896 0.0962 0.00924

0.3 –0.242 0.939 0.0907 0.0264 –0.167 0.657 0.0761 0.00858

0.4 –0.245 0.893 0.0916 0.0259 –0.163 0.487 0.0773 0.01030
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As is seen from Table 3, the extremum parameters of the flows around the usual smooth cylinder and the cyl-
inder with a cavity and their characteristics of turbulence change in the opposite manners depending on the compressi-
bility. True, the quantitative changes are small. With increase in M∞, the maximum velocity of the reverse flow in the
wake downstream of the smooth cylinder increases and this velocity downstream of the cylinder with a cell decreases
monotonically. The maximum energies of turbulence km behave analogously, while the maximum eddy-viscosity coef-
ficients µt,m change in the opposite manner.

As follows from Fig. 3a, an increase in the number M∞ leads to a decrease in the maximum velocity of the
flow circulating in the vortex cell; this velocity decreases to approximately 85% of the external-flow velocity with in-
crease in M∞ from 0 to 0.3. The longitudinal velocity u further decreases at M∞ = 0.4. As was shown earlier in in-
vestigating the change in the drag, the reason for the indicated effect is first of all the large change in the mass-flow
coefficients (curve 5 in Fig. 1b). This decrease is mainly due to the rarefaction in the region of the vortex cell (Fig.
3b), which is much larger than the rarefaction in the near wake downstream of the cylinder and increases with in-
crease in M∞ (Fig. 2b). It is notable that the dependence u(y) in the central part of the circular cavity is near-linear
and remains unchanged in the range of change in M∞ 0–0.3, i.e., under the conditions where one large-scale vortex
exists in the vortex cell. The core of a constant-vorticity vortex is practically nonviscous, i.e., the Batchelor hypothesis
on the existence of a nonviscous vortex surrounded by a boundary layer is fulfilled in the vortex cell [1].

As follows from Fig. 4, a vortex cell built into the surface of a cylinder substantially restructures the flow in
the near wake. The separation point on the surface of the cylinder is shifted downstream of the circular cavity, and

Fig. 2. Distribution of the longitudinal velocity component u (a) and the air
density ρ (b) along the symmetry axis x beginning at the back critical point of
the cylinder in the absence (1–4) and presence (5–8) of a vortex cell for dif-
ferent Mach numbers: M∞ = 0.01 (1, 5), 0.15 (2, 6), 0.3 (3, 7), and 0.4 (4, 8).

Fig. 3. Profiles of the longitudinal component u (a) and the air density ρ (b)
at the middle cross section of the circular cavity along the y axis in the ab-
sence (1–4) and presence (5–8) of a vortex cell on the cylinder for different
Mach numbers: M∞ = 0.01 (1, 5), 0.15 (2, 6), 0.3 (3, 7), and 0.4 (4, 8).
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the length of the circulation zone is three times smaller as compared to the cylinder with no a cavity. An increase in
the number M∞ has no a significant influence on the pattern of the separation flow around the body — analysis of
Fig. 2a shows that the longitudinal velocity of the flow in the wake downstream of the cylinder changes insignifi-
cantly. However, the field of local Mach numbers and the density distributions in the wake change significantly (Fig.
2b), and these changes are much larger for the cylinder with a vortex cell than for the usual cylinder. For example, at

Fig. 4. Comparative analysis of the patterns of flow around a cylinder (upper
semiplanes) and a cylinder with a vortex cell (lower semiplanes): M∞ = 0.01
(a), 0.15 (b), 0.3 (c), and 0.4 (d); M = 0.0001 (1), 0.005 (2), 0.01 (3), 0.05
(4), 0.1 (5), 0.15 (6), 0.2 (7), 0.25 (8), 0.3 (9). 0.35 (10), 0.4 (11), 0.45 (12),
and 0.5 (13).

Fig. 5. The pattern of flow in the neighborhood of a vortex cell on the cylin-
der: M∞ = 0.01 (a), 0.15 (b), 0.3 (c), and 0.4 (d); the isomaches are identical
to those in Fig. 4; M = 0.55 (14), 0.6 (15), 0.65 (16), 0.7 (17), and 0.75 (18).
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M∞ = 0.4, in the neighborhood of the side surface of the cylinder with no a cavity the local Mach number increases
by only 0.1 and reaches 0.5. At the same time, for the cylinder with a vortex cell the maximum local Mach numbers
exceed 0.75, i.e., they are close to the transonic Mach numbers.

The suction of air into the withdrawing channel in a circular cavity is similar in many respects to the bound-
ary-layer drain [1] (see Fig. 5). In any event, in the flow patterns presented, the near-wall layer in the neighborhood
of the vortex cell is clearly defined; this layer flows into the cell and then is transformed into the slot channel. The
high-intensity large-scale vortex, caught by the cell, is kept against the windward part of the cavity surface. The for-
mation of a local separation at the input to the withdrawing channel points to the fact that the velocity profile at this
site is significantly nonuniform. Thus, the organization of a concrete concentrated suction is warranted, i.e., the process
of control of the flow around bodies by the method being considered should be analyzed with consideration for the
method of intensification of the flow circulating in the vortex cell.

As was mentioned above, in the range of change in M∞ from 0 to 0.3, the pattern of the vortex flow remains
practically unchanged, even though the influence of the compressibility on the field of local Mach numbers is evident.
At M∞ = 0.4, in the cavity there arises a large-scale secondary vortex, and the separation point on the surface of the
cylinder shifts to the neighborhood of its trailing edge and a portion of air from the near wake is entraped by the vor-
tex cell. As follows from Fig. 3a, the cores of the primary and secondary vortices in the cell have a constant vorticity
and are practically nonviscous. However, the intensity of these vortices is much lower than the intensity of the vortex
at smaller values of M∞.

Thus, in the case where the volumetric rate of flow of the sucked air remains unchanged, the decrease in the
drag of a cylinder, provided by a vortex cell built into its surface, is limited by the Mach number M∞ = 0.4.

This work was carried out with financial support from the Russian Foundation for Basic Research (projects
No. 06-08-81002 and No. 05-02-00162) and the European-Union Framework-6 program (VortexCell2050 project).

NOTATION

a, velocity of sound, in fractions of U; Cx, Cxp, Cxf, drag, profile-drag, friction-drag related to the kinetic
head, in fractions of ρU2 ⁄ 2; cq, mass flow of the air sucked through the slot channel; D, diameter of the cylinder, m;
M, Mach number (M = q ⁄ a); k, energy of turbulence, in fractions of U2; q, modulus of the local velocity of a flow,
in fractions of U; Re, Reynolds number (Re = ρUD ⁄ µ); Tu, degree of turbulence, in fractions of U; x, y, horizontal
and vertical coordinates; in fractions of D; U, velocity of a uniform flow, m ⁄ sec; u, longitudinal velocity component,
in fractions of U; µ, coefficient of dynamic viscosity, kg ⁄ (m⋅sec); ρ, density, kg ⁄ m3. Subscripts: add, additional drag
caused by the expedience of energy; c, c.v, characteristics for the smooth cylinder and the cylinder with a vortex cell;
m, maximum values; t, characteristics of turbulence; ∞, value in the incident flow.
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Fig. 1. Multiblock computational grids (A–G) near the vortex cell with a withdrawing channel on the surface
of a cylinder and dependences of the total drag (curves 1, 2), drag (3), and the additional drag caused by the
expenditure of energy (4), the drag of the cylinder in the absence (1) and in the presence of a vortex cell, and
the mass-flow coefficient in the withdrawing channel (5) on the Mach number.
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